How do you find int arctanx arctanx?

3 Answers
Apr 12, 2018

The answer is =xarctanx-1/2ln(1+x^2)+C=xarctanx12ln(1+x2)+C

Explanation:

Perform this integral by integration by parts

intuv'=uv-intu'v

u=arctanx, =>, u'=1/(1+x^2)

v'=1, =>, v=x

Therefore,

The integral is

intarctanxdx=xarctanx-int(xdx)/(1+x^2)

int(xdx)/(1+x^2)=1/2int(2xdx)/(1+x^2)=1/2ln(1+x^2)

And finally,

intarctanxdx=xarctanx-1/2ln(1+x^2)+C

Apr 12, 2018

xarc tanx-1/2ln(x^2+1)+C, or,

xarc tanx-lnsqrt(x^2+1)+C.

Explanation:

Suppose that, I=intarc tanxdx=int(arc tanx)(1)dx

Using the following Rule of Integration by Parts (IBP) :

IBP : intuv'dx=uv-intu'vdx.

We take, u=arc tanx, and, v'=1.

:. u'=1/(x^2+1), and, v=intv'dx=int1dx=x.

:. I=xarc tanx-intx/(x^2+1)dx,

=xarc tanx-1/2int(2x)/(x^2+1)dx,

=xarctan x-1/2int{d/dx(x^2+1)}/(x^2+1)dx.

Since, int(f'(x))/f(x)dx=ln|f(x),

:. I=xarc tanx-1/2ln(x^2+1)+C, or,

I=xarc tanx-lnsqrt(x^2+1)+C.#.

Apr 12, 2018

We use the Integral of Inverse Functions theorem.

Explanation:

If f^-1 denotes a continuous inverse function then

\int f^{-1}(t)dt= t f^{-1}(t)-F( f^{-1}(t))+"c"

We let f^-1(x)=arctanx and f(x)=tanx. Then F(x)=inttanxdx=ln|secx| and F(f^-1(x))=ln|secarctanx|=lnsqrt(1+(tanarctanx)^2)=ln(sqrt(1+x^2))=1/2ln(1+x^2)

So

intarctanxdx=xarctanx-1/2ln(1+x^2)+"c"