We know that,
#color(red)((1)cos^2theta=(1+cos2theta)/2#
#color(blue)((2)intcosAxdx=(sinAx)/A+c#
#color(violet)((3)intsinAxdx=(-cosAx)/A+c#
Here,
#I=intxcos^2xdx#
#=intx((1+cos2x)/2)dx...toApply(1)#
#=1/2intxdx+1/2intxcos2xdx#
#"Using "color(blue)"Integration by Parts"# in second integral
#I=1/2x^2/2+1/2[x int cos2xdx-intd/(dx)(x)intcos2xdx)dx]#
#=x^2/4+1/2[x((sin2x)/2)-int(1)((sin2x)/2)dx]...toApply(2)#
#=x^2/4+1/4[xsin2x-intsin2xdx]#
#=x^2/4+1/4[xsin2x-((-cos2x)/2)]+c...toApply(3)#
#I=x^2/4+1/8[2xsin2x+cos2x]+c#