How do you prove #sin^2x/ (cos^2 +3cosx+2) = (1-cosx)/ (2+cosx)#?
4 Answers
As proved.
Explanation:
Q E D
Kindly refer to a Proof in the Explanation.
Explanation:
Explanation:
#"using the "color(blue)"trigonometric identity"#
#•color(white)(x)sin^2x+cos^2x=1#
#rArrsin^2x=1-cos^2x#
#"consider the left side"#
#(sin^2x)/(cos^2x+3cosx+2)#
#=(1-cos^2x)/(cos^2x+3cosx+2)#
#"the numerator is a "color(blue)"difference of squares"#
#"and the denominator is a quadratic in cos"#
#=((1-cosx)cancel((1+cosx)))/((cosx+2)cancel((cosx+1)))#
#=(1-cosx)/(2+cosx)=" right side "rArr"proven"#
Please see below.
After replacing :
Explanation:
Here,
Now,
So,