How do you prove sin^2x/ (cos^2 +3cosx+2) = (1-cosx)/ (2+cosx)?

4 Answers
Apr 16, 2018

As proved.

Explanation:

sin^2 x / (cos^2x + 3 cos x + 2)

=> (1-cos^2 x) / (cos^2 x + cos x + 2 cos x + 2)

=> ((1 + cos x) * (1 - cos x)) / (cos x (cos x + 1) + 2 * ( cos x + 1))

=> ((cancel(1 + cos x )) * (1 - cos x)) / ((cancel(cos x +1)) (cos x + 2))

=> (1 - cos x) / (2 + cos x) = R H S

Q E D

Apr 16, 2018

Kindly refer to a Proof in the Explanation.

Explanation:

sin^2x/(cos^2x+3cosx+2),

=(1-cos^2x)/{(cosx+1)(cosx+2)},

={cancel((1+cosx))(1-cosx)}/{cancel((cosx+1))(cosx+2)},

=(1-cosx)/(2+cosx), as desired!

Apr 16, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identity"

•color(white)(x)sin^2x+cos^2x=1

rArrsin^2x=1-cos^2x

"consider the left side"

(sin^2x)/(cos^2x+3cosx+2)

=(1-cos^2x)/(cos^2x+3cosx+2)

"the numerator is a "color(blue)"difference of squares"

"and the denominator is a quadratic in cos"

=((1-cosx)cancel((1+cosx)))/((cosx+2)cancel((cosx+1)))

=(1-cosx)/(2+cosx)=" right side "rArr"proven"

Apr 16, 2018

Please see below.
After replacing :cos^2. tocos^2x

Explanation:

Here,

sin^2x/(cos^2color(red)x+3cosx+2)=(1-cosx)/(2+cosx)

Now,

cos^2x+3cosx+2=cos^2x+2cosx+cosx+2

color(white)(..............................)=cosx(cosx+2)+1(cosx+2)

color(white)(..............................)=(cosx+1)(cosx+2)

So,

LHS=sin^2x/(cos^2x+3cosx+2)

=(1-cos^2x)/((cosx+1)(cosx+2))

=((1-cosx)cancel((1+cosx)))/(cancel((1+cosx))(2+cosx))

=(1-cosx)/(2+cosx)

=RHS