How do you rotate the figure B(-2,0), C(-4,3), Z(-3,4), and X(-1,4) 90 degree clockwise about the origin?

1 Answer
Jun 4, 2017

Please see below.

Explanation:

When we rotate a point #(x,y)# clockwise by #90^@# about the origin, it takes the position #(y,-x)#. Hence the figure formed by #B(-2,0)#, #C(-4,3)#, #Z(-3,4)# and #X(-1,4)#, which appears below

graph{((x+4)^2+(y-3)^2-0.02)((x+1)^2+(y-4)^2-0.02)((x+3)^2+(y-4)^2-0.02)((x+2)^2+y^2-0.02)=0 [-10, 10, -5, 5]}

will become

#B'(0,2)#, #C'(3,4)#, #Z'(4,3)# and #X'(4,1)#

graph{(x^2+(y-2)^2-0.02)((x-3)^2+(y-4)^2-0.02)((x-4)^2+(y-3)^2-0.02)((x-4)^2+(y-1)^2-0.02)=0 [-10, 10, -5, 5]}