What is the integral of sin(x) cos(x)sin(x)cos(x)?

1 Answer

It's 1/2 sin^2 (x) + C12sin2(x)+C.

The substitution used to solve this integral is simple.

Note that cos(x)cos(x) is the derivative of sin(x)sin(x).

Define the variable u=sin(x)u=sin(x).
We have du=cos(x)dxdu=cos(x)dx.
So, dx=1/cos(x) dudx=1cos(x)du.

The integral:

int sin(x) cos(x) dx = int u cos(x)/cos(x) du = int u dusin(x)cos(x)dx=ucos(x)cos(x)du=udu

Knowing that d/(du)[1/2 u^2 + C]=uddu[12u2+C]=u we have:

int u du = int d/(du)[1/2 u^2 + C] duudu=ddu[12u2+C]du

Using the Fundamental Theorem of Calculus we get:

int d/(du)[1/2 u^2 + C] du = 1/2 u^2 + C = 1/2 sin^2 (x) + Cddu[12u2+C]du=12u2+C=12sin2(x)+C