How do I evaluate #int (arcsin x)/sqrt (1+x) dx#?

1 Answer
Feb 17, 2015

We will integrate this using integration by parts.

Recall that #uv-intvdu#

Let #u=arcsin(x) # and #dv=dx/sqrt(1+x) #

Differentiating #u=arcsinx # we have
#du=1/sqrt(1-x^2)dx#

Integrate #dv=dx/sqrt(1+x) #

#intdv=intdx/sqrt(1+x) #

#v=2sqrt(1+x) #

Therefore,

#arcsin(x)(2sqrt(1+x))-int2sqrt(1+x)(1/sqrt(1-x^2))dx #

Some rewriting and factor #1-x^2#

#2arcsin(x)sqrt(1+x)- 2intsqrt(1+x)/sqrt((1+x)(1-x))dx#

#2arcsin(x)sqrt(1+x)-2intsqrt(1+x)/(sqrt(1+x)sqrt(1-x))dx#

#2arcsin(x)sqrt(1+x)-2int1/sqrt(1-x)dx #

Finally, we integrate

#2arcsin(x)sqrt(1+x)+4sqrt(1-x)+C #