How do you find a quadratic function f(x)=ax^2+bx+c for which f(1)=-2, f(-3)=-46, and f(3)=-16?

2 Answers
Jun 2, 2015

I would build a system of three equations in the three unknowns a,b,c and solve it using Cramer's Method:
enter image source here

Jun 2, 2015

The question gives us 3 simultaneous equations to solve:

2=f(1)=a+b+c

46=f(3)=9a3b+c

16=f(3)=9a+3b+c

Subtracting a couple of these we find:

30=16+46=f(3)f(3)

=(9a+3b+c)(9a3b+c)=6b

So b=306=5

Then

58=4616+4=f(3)+f(3)2f(1)

=(9a3b+c)+(9a+3b+c)2(a+b+c)

=16a2b=16a10

Add 10 to both ends to get:

48=16a

So a=4816=3

Then

2=f(1)=a+b+c=3+5+c = 2 + c#

Subtract 2 from both ends to get:

c=4

So f(x)=3x2+5x4

Check:

f(1)=3+54=57=2

f(3)=39354=27154=46

f(3)=39+354=27+154=16