How do you find the derivative of f(x) = (x^2 + 2x +3)e^-x?

1 Answer
Jul 3, 2015

d/dx((x^2+2x+3)e^-x)=-x^2e^-x-e^-x

Explanation:

d/dx((x^2+2x+3)e^-x)
=\underbrace(d/dx(x^2+2x+3))_((1)) * e^-x+(x^2+2x+3) * \underbrace(d/dx(e^-x))_((2)
\color(white)(...... ..............................)(By the product rule)

Lets calculate (1) first:
d/dx(x^2+2x+3)=d/dx(x^2)+d/dx(2x)+d/dx(3) = 2x+2+0=2x+2

Now, let's calculate (2):
d/dx(e^-x)=d/(d(-x))e^-xd/dx(-x)
\color(white)(...... ..............................)(By the chain rule)
= e^-x*-1=-e^-x

Combining the two, we get:
(2x+2)* e^(-x)+(x^2+2x+3)*(-e^(-x))
=\cancel(2xe^-x)+2e^-x -x^2e^-x\cancel(-2xe^-x)-3e^-x
=-x^2e^-x-e^-x