How do you graph #f(x)= (x^3+1)/(x^2-4)#?

1 Answer
Jul 12, 2015

Graph of #y=(x^3+1)/(x^2-4)#
graph{(x^3+1)/(x^2-4) [-40, 40, -20,20]}

Explanation:

There is no secret to graph a function.
# #
Make a table of value of #f(x)# and place points.
To be more accurate, take a smaller gap between two values of #x#

Better, combine with a sign table, and/or make a variation table of f(x). (depending on your level)

# #
# #
Before to start to draw, we can observe some things on #f(x)#
Key point of #f(x)#:
# #
# #

Take a look to the denominator of the rational function : #x^2-4#

Remember, the denominator can't be equal to #0#

Then we will be able to draw the graph, when :

#x^2-4!=0 <=> (x-2)*(x+2)!=0 <=> x!=2# & #x!=-2#

We name the two straight lines #x=2# and #x=-2#, vertical asymptotes of #f(x)#, ie, that the curve of #f(x)# never crosses this lines.
# #

Root of #f(x)# :

#f(x)=0 <=> x^3+1=0<=>x=-1#

Then :#(-1,0) in C_f#

Note : #C_f# is the representative curve of #f(x)# on the graph
# #
# #
# #

N.B : J'ai hésité à te répondre en français, mais comme nous sommes sur un site anglophone, je prefère rester dans la langue de Shakespeare ;) Si tu as une question n'hésite pas!