How do you find the nth derivative of f(x) = sin^4(x) + sin^2(x)cos^2(x)?

1 Answer
Aug 14, 2015

f^n(x) = 2^(n-1)(delta_0 + cos (2x + ((n-2)pi)/2)) " " n in ZZ_0^+

where delta_0 = {""_(0, " otherwise")^( 1, " " n = 0)

Explanation:

sin^2 A + cos^2 A = 1
sin A = cos (A-pi/2)
cos 2A = 1 - 2sin^2 A

f(x) = sin^4 x + sin^2 x cos^2 x = sin^2 x(sin^2 x + cos^2 x) = 1/2(1-cos 2x) = 1/2(1+cos(2x-pi))

f'(x) = sin 2x = cos (2x-pi/2)
f''(x) = 2cos 2x = 2cos (2x+0pi)
f'''(x) = -4sin 2x = -4 cos (2x-pi/2) = 4 cos (2x+(pi)/2)
f''''(x) = -8cos 2x = 8 cos (2x+pi)

f^n(x) = 2^(n-1)(delta_0 + cos (2x + ((n-2)pi)/2)) " " n in ZZ_0^+

where delta_0 = {""_(0, " otherwise")^( 1, " " n = 0)