How do you find the range of f(x)=5x^2+2x-1?

1 Answer
Aug 14, 2015

Range: {f(x) in RR: f(x) >= -6/5}

Explanation:

f(x) = 5x^2 + 2x - 1

Method 1: Completing the squares
f(x)= 5(x^2 + 2/5x + 1/25 - 1/25) - 1
= 5(x + 1/5)^2 - 6/5

Method 2: Stationary points
f'(x)= 0
10x = -2
x = -1/5, f(-1/5) = -6/5

Minimum point (-1/5,-6/5)

Hence range: {f(x) in RR: f(x) >= -6/5}

graph{5x^2+2x-1 [-2, 2, -5, 5]}