How do you find the inverse of f(x)=x^2-6xf(x)=x2โˆ’6x?

1 Answer
Oct 14, 2015

f^-1(x)= sqrt(x+9)+3fโˆ’1(x)=โˆšx+9+3

Explanation:

First you equate f(x)f(x) to another variable, say f(x)=yf(x)=y.

But before that, complete the square for f(x)f(x).

:. x^2-6x+3^2-3^2=(x-3)^2-9

Now,
y=(x-3)^2-9
(x-3)^2=y+9
(x-3)=sqrt(y+9)
x=sqrt(y+9)+3

Now swap back the x for the variable y.

So the inverse for f(x) is
f^-1(x)= sqrt(x+9)+3