dydx=ddx(x2(sinx)4+x(cosx)−2) (differentiate both parts)
⇔dydx=ddx(x2(sinx)4)+ddx(x(cosx)−2) (derivative of sum is sum of derivatives)
⇔dydx=(ddx(x2)⋅(sinx)4+x2⋅ddx((sinx)4))+ddx(x(cosx)−2)(product rule)
⇔dydx=(2x(sinx)4+x2⋅4⋅(sinx)3⋅ddx(sinx))+ddx(x(cosx)−2) (power rule and chain rule)
⇔dydx=(2x(sinx)4+4x2(sinx)3⋅cos(x))+ddx(x(cosx)−2) (trigonometric derivative)
⇔dydx=(2x(sinx)4+4x2(sinx)3⋅cos(x))+(ddx(x)⋅(cosx)−2+x⋅ddx((cosx)−3)) (product rule)
⇔dydx=(2x(sinx)4+4x2(sinx)3⋅cos(x))+((cosx)−2+−3⋅x⋅(cosx)−2⋅ddx(cosx)) (power rule and chain rule)
⇔dydx=(2x(sinx)4+4x2(sinx)3⋅cos(x))+((cosx)−2+−3⋅x⋅(cosx)−2⋅sin(x)) (trigonometric derivative)
So the derivative is:
2x(sinx)4+4x2(sinx)3⋅cosx+(cosx)−2−3x(cosx)−2⋅sinx
You can try simplifying this, but I don't think there's much to simplify.