How do you differentiate y=x2(sinx)4+x(cosx)2?

1 Answer
Oct 16, 2015

dydx=2x(sinx)4+4x2(sinx)3cosx+(cosx)23x(cosx)2sinx

Explanation:

dydx=ddx(x2(sinx)4+x(cosx)2) (differentiate both parts)
dydx=ddx(x2(sinx)4)+ddx(x(cosx)2) (derivative of sum is sum of derivatives)
dydx=(ddx(x2)(sinx)4+x2ddx((sinx)4))+ddx(x(cosx)2)(product rule)
dydx=(2x(sinx)4+x24(sinx)3ddx(sinx))+ddx(x(cosx)2) (power rule and chain rule)
dydx=(2x(sinx)4+4x2(sinx)3cos(x))+ddx(x(cosx)2) (trigonometric derivative)
dydx=(2x(sinx)4+4x2(sinx)3cos(x))+(ddx(x)(cosx)2+xddx((cosx)3)) (product rule)
dydx=(2x(sinx)4+4x2(sinx)3cos(x))+((cosx)2+3x(cosx)2ddx(cosx)) (power rule and chain rule)
dydx=(2x(sinx)4+4x2(sinx)3cos(x))+((cosx)2+3x(cosx)2sin(x)) (trigonometric derivative)

So the derivative is:
2x(sinx)4+4x2(sinx)3cosx+(cosx)23x(cosx)2sinx

You can try simplifying this, but I don't think there's much to simplify.