Intersection:
#2sintheta=2costheta => sintheta/costheta=1 => tantheta=1 => theta=pi/4#
#A=intint_A rdrd theta#
#A=int_0^(pi/4) d theta int_0^(2sintheta) rdr + int_(pi/4)^(pi/2) d theta int_0^(2costheta) rdr#
#A_1=1/2 int_0^(pi/4) d theta * 4sin^2 theta = int_0^(pi/4) (1-cos2theta) d theta#
#A_1 = (theta-1/2sin2theta) |_0^(pi/4) = pi/4-1/2#
#A_2=1/2 int_(pi/4)^(pi/2) d theta * 4cos^2 theta = int_(pi/4)^(pi/2) (1+cos2theta) d theta#
#A_2 = (theta+1/2sin2theta) |_(pi/4)^(pi/2) = pi/4-1/2#
#A=pi/4-1/2+pi/4-1/2 = pi/2-1#