How do you find the area of the region shared by the circles r=2cos(theta)r=2cos(θ) and r=2sin(theta)r=2sin(θ)?

1 Answer
Oct 24, 2015

pi/2-1π21

Explanation:

enter image source here

Intersection:
2sintheta=2costheta => sintheta/costheta=1 => tantheta=1 => theta=pi/42sinθ=2cosθsinθcosθ=1tanθ=1θ=π4

A=intint_A rdrd thetaA=Ardrdθ

A=int_0^(pi/4) d theta int_0^(2sintheta) rdr + int_(pi/4)^(pi/2) d theta int_0^(2costheta) rdrA=π40dθ2sinθ0rdr+π2π4dθ2cosθ0rdr

A_1=1/2 int_0^(pi/4) d theta * 4sin^2 theta = int_0^(pi/4) (1-cos2theta) d thetaA1=12π40dθ4sin2θ=π40(1cos2θ)dθ

A_1 = (theta-1/2sin2theta) |_0^(pi/4) = pi/4-1/2A1=(θ12sin2θ)π40=π412

A_2=1/2 int_(pi/4)^(pi/2) d theta * 4cos^2 theta = int_(pi/4)^(pi/2) (1+cos2theta) d thetaA2=12π2π4dθ4cos2θ=π2π4(1+cos2θ)dθ

A_2 = (theta+1/2sin2theta) |_(pi/4)^(pi/2) = pi/4-1/2A2=(θ+12sin2θ)π2π4=π412

A=pi/4-1/2+pi/4-1/2 = pi/2-1A=π412+π412=π21