How do you use synthetic division to divide #5x^77 - 4x^60 + 2x^43 + 6x^30 - 4x^19 + 2# divided by x - 1?
3 Answers
That's going to take you forever.
Explanation:
Here's a link to a great video explaining Synthetic Division Synthetic Division-Khan Academy. Also, whoever assigned you that problem must wish you hell.
Also, use Wolfram Alpha to check your work ...
Explanation:
Source:
http://tinyurl.com/q96x3lo
You can use the remainder theorem to determine the remainder as:
#5-4+2+6-4+2 = 7#
As for the quotient, I would not use synthetic division...
Explanation:
Use:
#x^N-1 = (x-1)sum_(n=0)^(N-1) x^n#
Hence:
#5x^77-4x^60+2x^43+6x^30-4x^19+2#
#=5(x^77-1)-4(x^60-1)+2(x^43-1)+6(x^30-1)-4(x^19-1)+7#
#=(x-1)(sum_(n=0)^76 5x^n - sum_(n=0)^59 4x^n + sum_(n=0)^42 2x^n + sum_(n=0)^29 6x^n - sum_(n=0)^18 4x^n) + 7#
#=(x-1)(sum_(n=60)^76 5x^n + sum_(n=43)^59 x^n + sum_(n=30)^42 3x^n + sum_(n=19)^29 9x^n + sum_(n=0)^18 5x^n) + 7#