How do you expand ln (sqrt((3^-2)(5^3)(2^-2)))?

1 Answer
Jan 8, 2016

ln(sqrt(3^-3*5^3*2^-2))=1/2(3ln(5)-2ln(2)-3ln(3))

Explanation:

Given that ln(x)=log_ex
and are satisfied:
x>0,e>0,e!=1

We can apply the logarithmic properties:

ln(a*b)=ln(a)+ln(b)
ln(a/b)=ln(a)-ln(b)
ln(a^b)=bln(a)

and remembering that:

a^(m/n)=root(n)(a^m)
a^-m=1/a^m

then:

ln(sqrt(3^-3*5^3*2^-2))=ln((3^-3*5^3*2^-2)^(1/2))=
=1/2ln(3^-3*5^3*2^-2)=1/2(ln(3^-3)+ln(5^3)+ln(2^-2))=
=1/2(-3ln(3)+3ln(5)-2ln(2))

Alternitevely:

ln((3^-3*5^3*2^-2)^(1/2))=1/2ln(3^-3*5^3*2^-2)=
=1/2ln(5^3/(3^3*2^2))=
=1/2(ln(5^3)-ln(3^3)-ln(2^2))=
=1/2(3*ln(5)-3ln(3)-2ln(2))