sin(theta) - csc(theta) + sec(theta)sin(θ)−csc(θ)+sec(θ)
=sin(theta)- 1/sin(theta) +1/cos(theta)=sin(θ)−1sin(θ)+1cos(θ)
=(sin(theta)sin(theta)-1)/sin(theta) + 1/cos(theta)=sin(θ)sin(θ)−1sin(θ)+1cos(θ)
=(sin^2(theta)-1)/sin(theta) + 1/cos(theta)=sin2(θ)−1sin(θ)+1cos(θ)
=-(1-sin^2(theta))/sin(theta) + 1/cos(theta)=−1−sin2(θ)sin(θ)+1cos(θ)
=-cos^2(theta)/sin(theta) +1/cos(theta)=−cos2(θ)sin(θ)+1cos(θ)
=(-cos^2(theta)*cos(theta))+1/(sin(theta)cos(theta))=(−cos2(θ)⋅cos(θ))+1sin(θ)cos(θ)
=(-cos^3(theta)+1)/(cos(theta)sqrt(1-cos^2(theta))=−cos3(θ)+1cos(θ)√1−cos2(θ)
=(1-cos^3(theta))/(cos(theta)sqrt(1-cos^2(theta))=1−cos3(θ)cos(θ)√1−cos2(θ)