How do you express sin theta - csc theta + sec theta sinθcscθ+secθ in terms of cos theta cosθ?

1 Answer
Jan 12, 2016

=(1-cos^3(theta))/(cos(theta)sqrt(1-cos^2(theta))=1cos3(θ)cos(θ)1cos2(θ)

Explanation:

sin(theta) - csc(theta) + sec(theta)sin(θ)csc(θ)+sec(θ)

=sin(theta)- 1/sin(theta) +1/cos(theta)=sin(θ)1sin(θ)+1cos(θ)

=(sin(theta)sin(theta)-1)/sin(theta) + 1/cos(theta)=sin(θ)sin(θ)1sin(θ)+1cos(θ)

=(sin^2(theta)-1)/sin(theta) + 1/cos(theta)=sin2(θ)1sin(θ)+1cos(θ)

=-(1-sin^2(theta))/sin(theta) + 1/cos(theta)=1sin2(θ)sin(θ)+1cos(θ)

=-cos^2(theta)/sin(theta) +1/cos(theta)=cos2(θ)sin(θ)+1cos(θ)

=(-cos^2(theta)*cos(theta))+1/(sin(theta)cos(theta))=(cos2(θ)cos(θ))+1sin(θ)cos(θ)

=(-cos^3(theta)+1)/(cos(theta)sqrt(1-cos^2(theta))=cos3(θ)+1cos(θ)1cos2(θ)

=(1-cos^3(theta))/(cos(theta)sqrt(1-cos^2(theta))=1cos3(θ)cos(θ)1cos2(θ)