How do you differentiate g(x) = sqrt(x^3-4)cos2xg(x)=√x3−4cos2x using the product rule?
1 Answer
Explanation:
For
g'(x) = u'(x) v(x) + u(x) v'(x)
In your case,
u(x) = sqrt(x^3-4)" " and
v(x) = cos 2x
So, first thing to do is compute the derivatives of
u(x) = sqrt(x^3-4) = (x^3-4)^(1/2)
color(white)(xxxxxxxxxxx) => u'(x) = 1/2 (x^3 - 4)^(- 1 /2 ) * 3x^2 = 1/(2 sqrt(x^3 - 4)) * 3x^2
v(x) = cos 2x color(white)(xx) => v'(x) = - sin (2x) * 2
Now, the only thing left to do is apply the formula!
g'(x) = u'(x) * v(x) + u(x) * v'(x)
color(white)(xxxx) = 1/(2 sqrt(x^3 - 4)) * 3x^2 * cos 2x - 2 sin (2x) * sqrt(x^3-4)
color(white)(xxxx) = (3x^2 cos 2x) /(2 sqrt(x^3 - 4)) - 2 sin (2x) * sqrt(x^3-4)