How do you express tan theta - cot^2theta tanθcot2θ in terms of cos theta cosθ?

1 Answer
Jan 16, 2016

Explanation is given below.

Explanation:

tantheta - cot^2thetatanθcot2θ

On handiling these kind of problem apply your previous knowledge on identity.

tantheta = sintheta/costhetatanθ=sinθcosθ

cottheta = costheta/sinthetacotθ=cosθsinθ

sin^2theta = 1-cos^2thetasin2θ=1cos2θ

Our problem:

tantheta - cot^2thetatanθcot2θ

=sintheta/costheta - cos^2theta/sin^2theta=sinθcosθcos2θsin2θ

=sqrt(1-cos^2theta)/cos(theta) - cos^2theta/(1-cos^2theta)=1cos2θcos(θ)cos2θ1cos2θ

=(sqrt(1-cos^2theta)(1-cos^2theta))/(costheta(1-cos^2theta)) -(cos^2thetacostheta)/(costheta(1-cos^2theta)=1cos2θ(1cos2θ)cosθ(1cos2θ)cos2θcosθcosθ(1cos2θ)

=((1-cos^2theta)^(3/2)-cos^3theta)/(costheta(1-cos^2theta))=(1cos2θ)32cos3θcosθ(1cos2θ)