How do you solve #2+ cos(2x)=3 cos (x)# over the interval 0 to 2pi?

1 Answer
Feb 1, 2016

#x=0, pi/3#

Explanation:

We want a function in terms of either #cos(x)# or #cos( 2x)#, but not both. We can use the double angle formula to convert #cos(2x)# into an expression with #cos(x)#.

Double Angle Formula
#cos(2x) = 2cos^2(x) -1#

Applying the double angle formula to our function gives;

#2+2cos^2(x) -1 = 3cos(x)#

Or, after a little rearranging;

#2cos^2(x) - 3cos(x) +1 = 0#

We can use the quadratic formula to factor this expression.

Quadratic Formula
#(-b+-sqrt(b^2-4ac))/(2a) # where # ax^2 + bx +c = 0#

Plugging in values for our function;

#cos(x)=(3+-sqrt((-3)^2-4(2)(1)))/(2(2))#

#cos(x)=(3+-sqrt(9-8))/4#

#cos(x)=(3+-sqrt(1))/4#

#cos(x)=1, 1/2#

A quick glance at a unit circle will show that;

#cos(0)=1#
#cos(pi/3)=1/2#

So;

#x=0, pi/3#