How do you multiply (9-i)(7-3i) in trigonometric form?

1 Answer
Feb 12, 2016

2sqrt(1189)(cos (alpha+beta)+isin(alpha+beta)), where alpha=tan^(-1)(-1/9) and beta=tan^(-1)(-3/7)

Explanation:

A complex number of form a+bi can be written as r(cos theta +i sin theta), where r=sqrt(a^2+b^2) and theta=tan^(-1)(b/a).

Using this (9-i)=sqrt82(cos alpha+i sin alpha), and alpha=tan^(-1)(-1/9)

Similarly, (7-3i)=sqrt58(cos beta+i sin beta), and beta=tan^(-1)(-3/7)

Multiplication of (sqrt82(cos alpha+i sin alpha) and sqrt58(cos beta+i sin beta) is given by

2sqrt(1189)(cos (alpha+beta)+isin(alpha+beta)), where alpha=tan^(-1)(-1/9) and beta=tan^(-1)(-3/7), as sqrt(82*58)=2sqrt(1189).