How do you integrate int x^2 cos^2 3 x dx using integration by parts?

1 Answer
Feb 29, 2016

x^2(x/2-sin(6x)/12) -x^3/3 - x cos(6x) + sin(6x)/6

Please check calculation too

Explanation:

u = x^2
cos^2 3x dx= {1 + cos(6x)}/2 dx= dv

du = 2x dx
v = x/2 - sin(6x)/12

integral I = x^2(x/2-sin(6x)/12) -x^3/3 + int (x/6 sin(6x))dx

integrate by parts again
u=x
du=dx
dv = sin(6x)/6 dx
v= -cos(6x)

so I = x^2(x/2-sin(6x)/12) -x^3/3 - x cos(6x) + sin(6x)/6