How do you evaluate Sin((5pi)/12) cos(pi/4) - cos((5pi)/12) sin(pi/4)?

2 Answers
Mar 3, 2016

0.5

Explanation:

To evaluate sin((5pi)/12)cos(pi/4)−cos((5pi)/12)sin(pi/4), we can use the identity

sin(x-y)=sinxcosy-cosxsiny

Hence sin((5pi)/12)cos(pi/4)−cos((5pi)/12)sin(pi/4)

= sin((5pi)/12-pi/4) = sin((5pi)/12-(3pi)/12) or

= sin((2pi)/12)=sin(pi/6)=0.5

Mar 3, 2016

sin (pi/6) = 1/2

Explanation:

Trig identity: sin (a - b) = sin a.cos b - sin b.cos a.
Therefor, the expression is reduced to:
sin ((5pi)/12 - sin (pi/4)) = sin ((2pi)/12) = sin (pi/6) = 1/2