How do you find the area bounded by the cardioid r=1+cos(theta)r=1+cos(θ)?

1 Answer
Mar 27, 2016

A=((cosx+4)sinx+3x)/4A=(cosx+4)sinx+3x4
enter image source here

Explanation:

Given: r=1+cos(theta)r=1+cos(θ)
Required: Area of cardioid?
Solution Strategy: Polar Coordinate Area Integral
A= int_(theta_1)^(theta_2) 1/2r^2d(theta)A=θ2θ112r2d(θ) substitute for rr
A= 1/2int_(theta_1)^(theta_2) ( 1+cos(theta))^2d(theta)A=12θ2θ1(1+cos(θ))2d(θ)
=1/2[int (1+2costheta+cos^2theta) d(theta)]=12[(1+2cosθ+cos2θ)d(θ)]
= 1/2[theta + 2sintheta+ int cos^2theta d(theta)]=12[θ+2sinθ+cos2θd(θ)]
I_3=color(brown)(int cos^2theta d(theta))I3=cos2θd(θ) apply reduction formula
I_3=(n-1)/n int cos^(n-2)thetad(theta) +(cos^(n-1)thetasintheta)/nI3=n1ncosn2θd(θ)+cosn1θsinθn
I_3=color(brown)(1/2 theta +(costhetasintheta)/2)I3=12θ+cosθsinθ2
Putting it all together:

A=((cosx+4)sinx+3x)/4A=(cosx+4)sinx+3x4