How do you evaluate #sec ((5pi)/12)#?

2 Answers
Apr 4, 2016

#2/(sqrt(2 - sqrt3))#

Explanation:

sec = 1/cos . Evaluate cos ((5pi)/12)
Trig unit circle, and property of complementary arcs give -->
#cos ((5pi)/12) = cos ((6pi)/12 - (pi)/12) = cos (pi/2 - pi/12) = sin (pi/12)#
Find sin (pi/12) by using trig identity:
#cos 2a = 1 - 2sin^2 a#
#cos (pi/6) = sqrt3/2 = 1 - 2sin^2 (pi/12)#
#2sin^2 (pi/12) = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 (pi/12) = (2 - sqrt3)/4#
#sin (pi/12) = (sqrt(2 - sqrt3))/2# --> #sin (pi/12)# is positive.
Finally,
#sec ((5pi)/12) = 2/(sqrt(2 - sqrt3))#

You can check the answer by using a calculator.

Apr 4, 2016

#sec ((5pi)/12)=sqrt6+sqrt2#

Explanation:

#sec x=1/cosx#

#sec ((5pi)/12)=1/cos((5pi)/12)#

#(5pi)/12 = pi/4 +pi/6#-> Break up into composite Argument

#=1/cos(pi/4 +pi/6)#

->use #cos (A+B)=cosAcosB-sinAsinB#

#=1/(cos(pi/4)cos(pi/6)-sin(pi/4)sin(pi/6))#

#=1/((sqrt2/2)(sqrt3/2)-(sqrt2/2)(-1/2)) #

#=1/(sqrt6/4 -sqrt2/4) = 1/ ((sqrt6-sqrt2)/4)=4/(sqrt6-sqrt2)#

#=4/(sqrt6-sqrt2) * (sqrt6+sqrt2)/(sqrt6+sqrt2)#

#=(4(sqrt6+sqrt2))/(6-2) = (4(sqrt6+sqrt2))/4#

#=sqrt6+sqrt2#