If #A = <2 ,3 ,-1 >#, #B = <6 ,1 ,2 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Apr 8, 2016
  • The angle between #vecA# and #vecC# =90

Explanation:

  • #C=A-B=<-4,2,-3>#
  • If you consider that the vectors are in rectangular form (the vectors' tail is on the origin), the vector difference between two vectors #A-B# goes from the head of #vecA# to the to the head of #vecB# forming a triangle #ABC#.
  • By finding the magnitude of the vectors, you can find the sine of the angle between to #vecA# and #vecC# #(angleAC)#.
  • #|A|=sqrt(2^2+3^2+(-1)^2)=3.74#
    #|B|=sqrt(6^2+1^2+2^2)=6.40#
    #|C|=sqrt((-4)^2+2^2+(-3)^2)=5.39#

  • Using the sine rule:
    #|A|/(sinangleBC)=|C|/(sinangleAB)=|B|/(sinangleAC)#
    #3.74/(sinangleBC)=5.39/(sinangleAB)=6.40/(sinangleAC)#

  • Doing the algebra:
    #angleAB=180-(angleAC+angleBC)#
    # sinangleAB=sin(180(angleAC+angleBC))=sin(angleAC+angleBC)#

#6.40sinangleAB=5.39sinangleAC#
#6.40sin(angleAC+angleBC)=5.39sinangle AC#

#sin(angleAC+angleBC)=8.41sinangleAC#

#cancel(sinangleAC)*cosangleBC+cancel(cosangleAC*sinangleBC)=8.41cancel(sinangleAC)#

#cosangleBC=8.41=>angleBC=32.75#

#cosangleAC*sinangleBC=0# ; #sinangleBC!=0#

#:.cosangleAC=0=>angleAC=90#

  • The angle between #vecA# and #vecC# =90