What is the projection of #< -2, -5, 7># onto #< 7,2, -5>#?

1 Answer
Apr 10, 2016

#proj_(vec(b))(vec(a)) = 59/78 [(-7), (-2), (5)]#

Explanation:

Given : Vectors #vec(a)=<-2, -5, 7># and #vecb<7,2, -5>#

Required: Projections of #vec(a)# onto #vec(b)#

Solution Strategy: #proj_(vec(b))(vec(a))=[vec(a)*vec(b)]/[vec(b)*vec(b)]*vec(b) #

#vec(a)*vec(b)=(-2*7)+(-5*2)+(7*(-5))=-59#
#vec(b)*vec(b)= 7*7+2*2+(-5*-5)#=78

#proj_(vec(b))(vec(a)) = 59/78 [(-7), (-2), (5)]#

Note: the vectors are flattened to 2D in the geometric depiction. You imager simply gives you an idea what a projection is...
Let's see what it looks like geometrically:
enter image source here