How do you simplify [(1 + sin theta)/cos theta] + [cos theta/(1 + sin theta)]?

2 Answers
Apr 25, 2016

2sectheta

Explanation:

Multiply the fractions to achieve a common denominator.

=[(1+sintheta)/costheta][(1+sintheta)/(1+sintheta)]+[costheta/(1+sintheta)][costheta/costheta]

=(1+2sintheta+sin^2theta)/(costheta(1+sintheta))+cos^2theta/(costheta(1+sintheta))

=(1+2sintheta+(sin^2theta+cos^2theta))/(costheta(1+sintheta))

Recall the Pythagorean Identity sin^2theta+cos^2theta=1.

=(2+2sintheta)/(costheta(1+sintheta))

=(2(1+sintheta))/(costheta(1+sintheta))

=2/costheta

=2sectheta

Apr 25, 2016

2sectheta

Explanation:

Begin by writing the fractions as a single fraction by extracting the lowest common denominator
In this case costheta(1 + sintheta)

rArr( (1 +sintheta)^2 + cos^2 theta)/(costheta(1+sintheta)

Expanding the numerator

( (1+2sintheta+sin^2theta) + cos^2theta)/(costheta(1+sintheta))

using the identity (sin^2theta+cos^2theta=1)

then (1+2sintheta+1)/(costheta(1+sintheta)) =(2+2sintheta)/(costheta(1+sintheta))

=(2(1+sintheta))/(costheta(1+sintheta))=(2cancel((1+sintheta)))/(costhetacancel((1+sintheta)))

= 2/costheta=2sectheta