How do you simplify [(1 + sin theta)/cos theta] + [cos theta/(1 + sin theta)]?
2 Answers
Explanation:
Multiply the fractions to achieve a common denominator.
=[(1+sintheta)/costheta][(1+sintheta)/(1+sintheta)]+[costheta/(1+sintheta)][costheta/costheta]
=(1+2sintheta+sin^2theta)/(costheta(1+sintheta))+cos^2theta/(costheta(1+sintheta))
=(1+2sintheta+(sin^2theta+cos^2theta))/(costheta(1+sintheta))
Recall the Pythagorean Identity
=(2+2sintheta)/(costheta(1+sintheta))
=(2(1+sintheta))/(costheta(1+sintheta))
=2/costheta
=2sectheta
Explanation:
Begin by writing the fractions as a single fraction by extracting the lowest common denominator
In this casecostheta(1 + sintheta)
rArr( (1 +sintheta)^2 + cos^2 theta)/(costheta(1+sintheta) Expanding the numerator
( (1+2sintheta+sin^2theta) + cos^2theta)/(costheta(1+sintheta)) using the identity
(sin^2theta+cos^2theta=1) then
(1+2sintheta+1)/(costheta(1+sintheta)) =(2+2sintheta)/(costheta(1+sintheta))
=(2(1+sintheta))/(costheta(1+sintheta))=(2cancel((1+sintheta)))/(costhetacancel((1+sintheta)))
= 2/costheta=2sectheta