How do you convert #-6 - 6i sqrt 3# to polar form?

1 Answer
Jul 14, 2016

#12(sin ((-5pi)/6)) - i cos ((-5pi)/6))#

Explanation:

In polar form,# (rsin theta + r i cos theta) # ... #I#
Comparing it with #-6-6isqrt3#
we get #rarr -6 = r sin theta# ... 1
#rarr -6sqrt3 = r cos theta# ... 2

Squaring and adding 1 and 2,
#r^2 sin^2 theta + r^2 cos^theta = (-6)^2 + (-6sqrt3)^2#
#r^2(sin^2 theta + cos^2 theta) = 36 + 108#
#r^2 = 144#
#r = 12#

Dividing equation 1 by 2
#tan theta =( -6)/(-6sqrt3)#
#tan theta = 1/sqrt3#
#theta = pi/6#

Real part of complex no = #-6 (-x)#
Imaginary part of complex no = #-6sqrt3 (-y)#
#:. #the point is in 3rd quadrant.

At 3rd quadrant #alpha = theta - pi#
#alpha = (-5pi)/6#

Substituting the value in equation #I# we get,
#12(sin ((-5pi)/6)) - i cos ((-5pi)/6))#