Question #67a77

1 Answer
Aug 1, 2016

#z^11 = 32 + 32i#

Explanation:

De Moivre's Theorem states that for complex number

#z = r(costheta + isintheta)#

#z^n = r^n(cos(ntheta) + isin(ntheta))#

So we need to get our complex number into modulus-argument form.

For #z = x+yi#

#r= sqrt(x^2+y^2) and theta = tan^(-1)(y/x) " (usually!)"#

I say usually because the number may be in a different quadrant and require some action.

#r=sqrt(1^2+1^2) = sqrt(2)#

#theta = tan^(-1)((1)/(-1)) = pi - tan^(-1)(1) = (3pi)/4#

So #z = sqrt(2)(cos((3pi)/4) + isin((3pi)/4))#

#z^(11) = (sqrt(2))^11(cos((33pi)/4) + isin((33pi)/4))#

#z^11 = 2^(11/2)(cos((pi)/4) + isin((pi)/4))#

#z^11 = 2^(11/2)(1/(sqrt(2)) + 1/(sqrt(2))i) = 2^(11/2)(2^(-1/2) + 2^(-1/2)i)#

#z^11 = 2^(11/2-1/2) + 2^(11/2-1/2)i = 2^5 + 2^5i#

#z^11 = 32 + 32i#