How do you evaluate #tan(pi/2+pi/6) . cot (pi-pi/6) . cos (pi/2-pi/6)#?

1 Answer
Aug 13, 2016

Using identities for tan(A+B) and cos(A+B)

Explanation:

So tan(A-B)= #"tanA-tanB"/"(1+tanAtanB)"#
So cot(A-B) will be the reciprocal - #"(1+tanAtanB)"/"tanA-tanB"#
So A- #pi# and B is #-pi/6#
So =

"(tan(#2pi/3#)" x "(cos(#pi/3#))"x ("(1+tan(#pi)tan(#-pi/6#))")/"tan(#pi#)-tan(#-pi/6#)"#

= #-sqrt3# x #1/2# x #(\frac{1}{\sqrt{3}}0+1)#/#0-\frac{1}{\sqrt{3}}#

Solving will give 1.5