If #P(x,y)# lies on the interval #A(x_1,y_1), B(x_2,y_2)# such that #AP : PB =a : b#, with a and b positive, show that #x= (bx_1+ax_2) /(b+a)# and #y=(by_1+ay_2)/(b+a)#?

If #P(x,y)# lies on the interval #A(x_1,y_1), B(x_2,y_2)# such that #AP : PB =a : b#, with a and b positive,show that
#x= (bx_1+ax_2) /(b+a)#
and #y=(by_1+ay_2)/(b+a)#?
.

2 Answers
Aug 27, 2016

See below.

Explanation:

If #P in bar(AB)# then

#P =A +lambda (B-A), lambda in [0,1]# or equivalently

#P = B + mu(A-B), mu in [0,1]#

also

#norm(P-A) = lambda norm(B-A)# and
#norm(P-B) = mu norm(A-B)#

but

#norm(P-A)/norm(P-B) = lambda/mu = a/b = (a(a+b))/(b(a+b))#

but anyway

#lambda = a/(a + b)# and #1-lambda = b/(a+b)#

so another reading is

#P = (1-lambda)A+lambda B=b/(a+b)A+a/(a+b)B#

resulting in

#x = (b x_1+a x_2)/(a+b)#

#y = (b y_1+a y_2)/(a+b)#

Aug 27, 2016

See the geometric construction to guide you with set up...

Explanation:

From the figure solve for x:
enter image source here

#ax_2-ax_1=(a+b)(x-x_1)=ax-ax_1+bx-x_1=(a+b)x-(a+b)x_1 #
Rearranging and solving for x we have:
#x= (ax_2+bx_1)/(a+b)#

Applying the same logic to the ratio:
#a/(a+b) = bar(PC)/bar(BD)= (y-y_1)/(y_2-y_1)# Solving for #y#:
#y = (ay_2+by_1)/(a+b)#