How do you simplify (cot(theta))/ (csc(theta) - sin(theta))?

2 Answers
Sep 30, 2016

=(costheta/sintheta)/(1/sintheta - sin theta)

=(costheta/sintheta)/(1/sintheta - sin^2theta/sintheta)

=(costheta/sintheta)/((1 - sin^2theta)/sintheta

=(costheta/sintheta)/(cos^2theta/sintheta)

=costheta/sintheta xx sintheta/cos^2theta

=1/costheta

=sectheta

Hopefully this helps!

Sep 30, 2016

sec theta

Explanation:

Since cot theta=cos theta/sin theta and csc theta =1/sin theta, the expression becomes:

(cos theta/sin theta)/(1/sintheta-sin theta)

that's

(cos theta/sin theta)/((1-sin^2 theta)/sin theta);

then, since 1-sin^2 theta=cos^2 theta, the expression becomes:

(cos theta/cancel sin theta)/(cos^2 theta/cancel sin theta)

=1/cos theta=sec theta