Our vectors are
A = langle -3, 8, -1 rangle,
B = langle 0, -4, 2 rangle.
Firstly, it's important to understand how the norm || cdot || is related to the inner product. By definition,
||A||^2 = A cdot A.
Therefore,
A cdot B - ||A|| ||B|| = A cdot B - sqrt((A cdot A) (B cdot B)).
Calculating A cdot B, A cdot A and B cdot B, using the definition of the inner product in three dimensions, where A_{i} is the i-th component of the vector A = langle A_{1}, A_{2}, A_{3} rangle,
A cdot B = sum_{i=1}^{3} A_{i} B_{i},
A cdot B = -3 cdot 0 + 8 cdot (-4) + (-1) cdot 2 = -34,
A cdot A = (-3)^2 + 8^2 + (-1)^2 = 74,
B cdot B = 0^2 + (-4)^2 + 2^2 = 20.
Back to our expression,
A cdot B - sqrt((A cdot A) (B cdot B))
= -34 - sqrt(74 cdot 20)
A cdot B - sqrt((A cdot A) (B cdot B))
= -34 - 2 cdot sqrt(37 cdot 10)
A cdot B - sqrt((A cdot A) (B cdot B))
approx -72,5.
Therefore,
A cdot B - ||A|| ||B|| = -34 - 2 cdot sqrt(37 cdot 10).
Geometrically, this is a measure of how disaligned the two vectors are, since
(A cdot B)/(||A|| ||B||) - (||A|| ||B||)/(||A|| ||B||) = cos(theta) - 1,
where theta is the angle between the vectors, and, therefore, the closer A cdot B - ||A|| ||B|| is to 0, the more aligned are the vectors.