How do you integrate #int arctan(1/x)# using integration by parts?

1 Answer
Oct 17, 2016

See the explanation section below.

Explanation:

#int arctan(1/x) dx#

Let #theta = arctan(1/x)#.

This makes #tan theta = 1/x#, so #cot theta = x#.

Furthermore, #dx = -csc^2 theta " " d theta#

The integral becomes:

#int theta (-csc^2 theta) d theta#

Let #u = theta# and #dv = (-csc^2 theta) d theta#

So #du = d theta# and #v = cot theta#

#uv-int v du = theta cot theta - int cot theta d theta#

The integral can be found by substitution. We get
#theta cot theta -ln abs sin theta +C#

Using #cot theta = x# and some trigonometry, we sind #sin theta = 1/sqrt(x^2+1)#

Therefore

#int arctan(1/x) dx = x arctan (1/x)-ln(1/sqrt(x^2+1))+C#

# = x arctan(1/x)+1/2 ln(x^2+1) +C#