How do you simplify #(-3-i)(2-2i)#?

1 Answer
Oct 20, 2016

#-8+4i#

Explanation:

Multiply the brackets out as for normal algebra but replace #i^2#with #-1#

#(-3-i)(2-2i)#

multiplying out, and building up the expansion.

#(color(red)(-3)-i)(color(red)2-2i)#

=#color(red)(-6)#

#(color(red)(-3)-i)(2-color(red)(2i))#

=#-6-(color(red)(-6i))#

#(-3-color(red)(i))(color(red)2-2i)#

=#-6-(-6i)-color(red)(2i)#

#(-3-color(red)(i))(2-color(red)(2i))#

=#-6-(-6i)-2i+color(red)(2i^2)#

#=-6+6i-2i+2xx(-1)#

#=-6+6i-2i-2#

collecting like terms, putting the real part first , we have:

#-8+4i#