Question #084f4

2 Answers
Nov 7, 2016

Definitivelly x^8 < e^sqrt(x)x8<ex by far

Explanation:

int_0^oo x^8e^(-sqrt(x))dx=2int_0^ooy^17e^(-y)dy0x8exdx=20y17eydy

EEy_0: \ y^17 < e^(y/2), AA y>y_0

int_0^oo x^8e^(-sqrt(x))dx<=2int_0^(y_0)y^17e^(-y)dy+2int_(y_0)^oo e^(-y/2)dx=
=2int_0^(y_0)y^17e^(-y)dy-4[e^(-y/2)]_(y_0)^oo=2int_0^(y_0)y^17e^(-y)dy+4e^(-y_0/2)

inty^n e^(-y)dy can be calculated by parts

inty^n e^(-y)dy=-e^(-y)*(y^n+ny^(n-1)+...+n!)+c

Nov 8, 2016

Given integral = int_0^ooy^17e^-ydy
f(y)=y^17e^-y=e^(17lny-y)\ \
g(y)=(1-17/y) *f(y)
c=1

Explanation:

lim_(y->+oo)f(x)/g(x)=1

int_0^oog(y)dy=-int_0^oo(17/y-1)e^(17lny-y)=
=-[e^(17lny-y)]_0^oo=0