Question #084f4

2 Answers
Nov 7, 2016

Definitivelly #x^8 < e^sqrt(x)# by far

Explanation:

#int_0^oo x^8e^(-sqrt(x))dx=2int_0^ooy^17e^(-y)dy#

#EEy_0: \ y^17 < e^(y/2), AA y>y_0#

#int_0^oo x^8e^(-sqrt(x))dx<=2int_0^(y_0)y^17e^(-y)dy+2int_(y_0)^oo e^(-y/2)dx=#
#=2int_0^(y_0)y^17e^(-y)dy-4[e^(-y/2)]_(y_0)^oo=2int_0^(y_0)y^17e^(-y)dy+4e^(-y_0/2)#

#inty^n e^(-y)dy# can be calculated by parts

#inty^n e^(-y)dy=-e^(-y)*(y^n+ny^(n-1)+...+n!)+c#

Nov 8, 2016

Given integral #= int_0^ooy^17e^-ydy#
#f(y)=y^17e^-y=e^(17lny-y)\ \ #
#g(y)=(1-17/y) *f(y)#
#c=1#

Explanation:

#lim_(y->+oo)f(x)/g(x)=1#

#int_0^oog(y)dy=-int_0^oo(17/y-1)e^(17lny-y)=#
#=-[e^(17lny-y)]_0^oo=0#