An isosceles triangle has sides A, B, and C with sides B and C being equal in length. If side A goes from #(7 ,4 )# to #(2 ,1 )# and the triangle's area is #18 #, what are the possible coordinates of the triangle's third corner?

1 Answer
Nov 8, 2016

#P_1=(45/34;265/34)\ \ \ \ P_2=(261/34;-95/34)#

Explanation:

Calculate the middle point of side A

#M_A=((7+2)/2;(4+1)/2)=(9/2;5/2)#

Get the direction of A

#m_A=(4-1)/(7-2)=3/5#

The direction of A axis:

#m_(A|--)=-1/m_A=-5/3#

The equation of A axis:

#y-5/2 = -5/3(x-9/2)#

#5x+3y-30=0#

graph{(5x+3y-30)(3x-5y-1)((x-2)^2+(y-1)^2-0.01)((x-7)^2+(y-4)^2-0.01)((x-45/34)^2+(y-265/34)^2-0.01)((x-261/34)^2+(y+95/34)^2-0.01)=0 [-3,23,-4,9]}

Let #P_0=((30-3y_0)/5;y_0)# be a generic point on A axis.

The triangle area can be calculated:

#A=abs(2(4-y_0)+7(y_0-1)+(30-3y_0)/5*(1-4))/2#

so

#8-2y_0+7y_0-7-18+9/5y_0 = +-36#

#34/5y_0=17+-36#

#y_0=5/2+-90/17#

#y_1=265/34\ \ \ \ ,\ \ \ \ y_2=-95/34#

#x_1=(30-3y_1)/5=45/34\ \ \ \ , \ \ \ \ x_2=(30-3y_2)/5=261/34#