#cos(pi/12)=sqrt(2+sqrt(3))/2#
#sin(pi/12)=sqrt(2-sqrt(3))/2#
#cos(pi/8)=sqrt(2+sqrt(2))/2#
#sin(pi/8)=sqrt(2-sqrt(2))/2#
so
#P_1=(-3sqrt(2+sqrt(3));-3sqrt(2-sqrt(3)))#
#P_2=(-3/2sqrt(2+sqrt(2));3/2sqrt(2-sqrt(2)))#
#bar(P_1P_2)=sqrt((-3sqrt(2+sqrt(3))+3/2sqrt(2+sqrt(2)))^2+(3sqrt(2-sqrt(3))+3/2sqrt(2-sqrt(2)))^2)=#
#=sqrt(18+cancel(9sqrt3)+9/2+cancel(9/4sqrt2)-9sqrt((2+sqrt3)(2+sqrt2))+18-cancel(9sqrt3)+9/2-cancel(9/4sqrt2)+9sqrt((2-sqrt2)(2-sqrt3)))=#
#=sqrt(45-9(sqrt(4+sqrt6+2(sqrt2+sqrt3))-sqrt(4+sqrt6-2(sqrt2+sqrt3))))#
#=3sqrt(5-(sqrt(4+sqrt6+2sqrt(5+2sqrt6))-sqrt(4+sqrt6-2sqrt(5+2sqrt6))))#
Now put
#a=8+2sqrt(6)#
and
#b=8#
then
#a^2-b=80+32sqrt(6)#
so using
#sqrt(a-sqrtb)=sqrt((a+sqrt(a^2-b))/2)-sqrt((a+sqrt(a^2-b))/2)#
#sqrt(8+2sqrt(6)-sqrt(8))=#
#=sqrt((8+2sqrt(6)+4sqrt(5+2sqrt6))/2)-sqrt((8+2sqrt(6)-4sqrt(5+2sqrt6))/2)#
#=sqrt(4+sqrt(6)+2sqrt(5+2sqrt6))-sqrt(4+sqrt(6)-2sqrt(5+2sqrt6))#
So
#bar(P_1P_2)=3sqrt(5-sqrt(8+2sqrt(6)-sqrt(8)))=3sqrt(5-sqrt(8+2(sqrt(6)-sqrt(2))))#