How do you write out the equation of the line passing through #(1,5) (6,15)#?

2 Answers
Nov 15, 2016

#y=2x+3#

Explanation:

Use point-slope and slope formula.

We first need to find the slope by finding the change in y over the change in x. This would be #(15-5)/(6-1)=10/5#, which gives us #2#.

Now if we look at point slope formula, it is #y-y_1=m(x-x_1)# where #x_1# and #y_1# are the x and y coordinates of a given point. Let's just say we plug in #(1,5)# for it and the #2# for #m# which is slope.

#y-5=2(x-1)#

Add #5# to both sides.

#y\cancel(-5)\cancel(\color(indianred)(+5))=2(x-1)\color(indianred)(+5)#

Distribute #2#

#y=\color(navy)(2x-2)+5#

Add #-2# and #5#

#y=2x+\color(olive)(3)#

Nov 15, 2016

#y=2x+3#

Explanation:

Apply slope formula

  • use formula #m=(y_2-y_1)/(x_2-x_1)# given two points #(x_1,y_1)# and #(x_2,y_2)# (doesn't matter which one comes first)
    the slope you get should be #\color(olive)(m)=10/5=2/1=\color(olive)(2)#

Apply point-slope formula

  • now plug-in one of the points for the formula #y-y_1=m(x-x_1)#,
    which will now become #y-y_1=\color(olive)(2)(x-x_1)#.
    here, #\color(indianred){(x_1,y_1)}# can be either of the points.
    for easier explanation, used #\color(indianred){(1,5)}#

Working it out

step A #\color(maroon)(rightarrow)#plugging in: #y-\color(indianred)(5)=2(x-\color(indianred)(1))#
step B #\color(maroon)(rightarrow)#distributing: #y-5=\color(seagreen)(2x-2)#
step C #\color(maroon)(rightarrow)##\color(teal)(5)# added to each side: #y\cancel(-5)\cancel(\color(teal){+5})=2x-2\color(teal)(+5)#
step D #\color(maroon)(rightarrow)#simplifying like terms: #y=2x+\color(green)(3)#

  • therefore the equation is:
    #\color{cornflowerblue}{y=2x+3}#