How do you find the derivative of y=(2x^3+4)(x^2-3x+1)?

1 Answer
Jan 29, 2017

dy/dx=10x^4-24x^3+6x^2+8x-12

Explanation:

differentiate using the color(blue)"product rule"

"Given "y=f(x).g(x)" then"

color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=f(x)g'(x)+g(x)f'(x))color(white)(2/2)|)))larr" product rule"

"here "f(x)=2x^3+4rArrf'(x)=6x^2

"and "g(x)=x^2-3x+1rArrg'(x)=2x-3

rArrdy/dx=(2x^3+4)(2x-3)+(x^2-3x+1).6x^2

distributing brackets.

=4x^4-6x^3+8x-12+6x^4-18x^3+6x^2

rArrdy/dx=10x^4-24x^3+6x^2+8x-12