How do you simplify #Cos [tan^-1(-1) + cos^-1(-4/5)]#?

2 Answers
Mar 20, 2017

see below

Explanation:

Use the property #color(blue)(cos(A+B)=cosAcosB-sinAsinB#

For the #color(red)(tan^-1 (-1)# we know that our triangle is in quadrant 4. Since #color(red)(tan^-1 x# is restricted to quadrants 1 and 4 and since the argument is negative it means our triangle has to be in quadrant 4.

Hence, the side #color(red)(opposite # to #color(red)(angle theta = -1# and #color(red)(adjacent# to #color(red)(angle theta = 1# and so the #color(red)(hypote n use=sqrt2#. In this case #color(red)(theta=45^@# but we don't need to know the value of #color(red)(theta#. Therefore,

#color(blue)(cos(tan^-1(-1))=cos theta=(adjacent)/(hypote n use)=1/sqrt2 = sqrt2/2#

#color(blue)(sin(tan^-1(-1))=sin theta=(opposite)/(hypote n use)=-1/sqrt2 = -sqrt2/2#

For the #color(magenta)(cos^-1(-4/5)#the triangle is in quadrant 2 since #color(magenta)(cos^-1 x)#is restricted to quadrants 1 and 2 and since the argument is negative the triangle has to be in quadrant 2.

Hence, #color(magenta)(adjacent # to #color(magenta)(angle theta=-4# and #color(magenta)(hypote n use = 5#. Therefore by using pythagorean theorem the #color(magenta)(opposite# to #color(magenta)(angle theta=3#

#color(blue)((cos(cos^-1(-4/5))=cos theta = (adjacent)/(hypote n use)=-4/5#

#color(blue)(sin(cos^-1(-4/5)=sin theta=(opposite)/(hypote n use) = 3/5#

Then using the property #color(orange)(cos(A+B)=cosAcosB-sinAsinB# where #color(orange)(A=tan^-1 (-1) and B=cos^-1(-4/5)# we have

#cos(tan^-1(-1)+cos^-1(-4/5))=color(blue)(cos(tan^-1(-1))cos(cos^-1(-4/5))-sin(tan^-1(-1)) sin(cos^-1(-4/5))#

#color(blue)(=sqrt2/2 * (-4)/5-(-sqrt2)/2*3/5#

#color(blue)(=(-4sqrt2)/10)+color(blue)((3sqrt2)/10#

#color(blue)( :. = -sqrt2/10#

Mar 21, 2017

#LHS=cos(tan^-1(-1)+cos^-1(-4/5))#

#=cos(tan^-1tan(-pi/4)+cos^-1(-4/5))#

#=cos((-pi/4)+cos^-1(-4/5))#

#=cos(-pi/4)cos(cos^-1(-4/5))-sin(-pi/4)sin(cos^-1(-4/5))#

#=cos(pi/4)(-4/5))+sin(pi/4)sin(sin^-1sqrt(1-(-4/5)^2))#

#=1/sqrt2xx(-4/5)+1/sqrt2xx3/5#

#=(-4+3)/(5sqrt2)#

#=-1/(5sqrt2)=-sqrt2/10#