Find the maximum and minimum values for the function f defined by f(x) = 2sinx + cos2x in the interval [0, pi/2]?

1 Answer
Apr 13, 2017

Minimum:
f(x) = {1, x=0, pi/2}
Maximum:
f(x) = {3/2, x=pi/6}

Explanation:

f(x) = 2sinx + cos2x

f'(x) = 2cosx - 2sin2x

Now to find the critical number,

f'(x) = 0

2cosx - 2sin2x = 0
2cosx-2(2sinxcosx) = 0
2cosx - 4sinxcosx = 0
2cosx(1-2sinx) = 0

2cosx=0
x = pi/2

and 1-2sinx=0
x=pi/6

Therefore,

When x=0, f(x) = 2.0+1 = 1 and
when x=pi/2, f(x) = 2.1-1=1

And

when x=pi/6, f(x) = 2.1/2+1/2 = 3/2

Hence,

Minimum:
f(x) = {1, x=0, pi/2}
Maximum:
f(x) = {3/2, x=pi/6}