What is the equation of the line that is normal to the polar curve f(theta)=sin(2theta+pi) -theta at theta = pi/4?

1 Answer
May 19, 2017

(y-(-4sqrt(2)-pi sqrt(2))/8)=(pi/(8+pi))(x-(-4sqrt(2)-pi sqrt(2))/8)

Explanation:

Find r when theta=pi/4
r=sin(2(pi/4)+pi) -theta=(-4-pi)/4

Find (dr) /(d theta):
r=sin(2 theta + pi) -theta
(dr) /(d theta)=cos(2 theta + pi) (2)-1=2cos(2 theta + pi) -1

Substitute theta=pi/4:
=2cos(2(pi/4)+pi)-1=-1

Find the derivative:
dy/(dx)=((-1)sin (pi/4) +((-4-pi)/4)cos (pi/4))/((-1)cos(pi/4) -((-4-pi)/4) sin (pi/4))=-8/pi-1

Find the respective x and y.
x=rcos(theta)=((-4-pi)/4) (sqrt(2)/2)=(-4sqrt(2)-pi sqrt(2))/8

y=rsin(theta)=((-4-pi)/4) (sqrt(2)/2)=(-4sqrt(2)-pi sqrt(2))/8

The slope of a normal line is the negative reciprocal of the derivative.
-1/(-8/pi-1)=pi/(8+pi)

Putting it all together:
(y-y_1)=m(x-x_1)
(y-(-4sqrt(2)-pi sqrt(2))/8)=(pi/(8+pi))(x-(-4sqrt(2)-pi sqrt(2))/8)