Find r when theta=pi/4
r=sin(2(pi/4)+pi) -theta=(-4-pi)/4
Find (dr) /(d theta):
r=sin(2 theta + pi) -theta
(dr) /(d theta)=cos(2 theta + pi) (2)-1=2cos(2 theta + pi) -1
Substitute theta=pi/4:
=2cos(2(pi/4)+pi)-1=-1
Find the derivative:
dy/(dx)=((-1)sin (pi/4) +((-4-pi)/4)cos (pi/4))/((-1)cos(pi/4) -((-4-pi)/4) sin (pi/4))=-8/pi-1
Find the respective x and y.
x=rcos(theta)=((-4-pi)/4) (sqrt(2)/2)=(-4sqrt(2)-pi sqrt(2))/8
y=rsin(theta)=((-4-pi)/4) (sqrt(2)/2)=(-4sqrt(2)-pi sqrt(2))/8
The slope of a normal line is the negative reciprocal of the derivative.
-1/(-8/pi-1)=pi/(8+pi)
Putting it all together:
(y-y_1)=m(x-x_1)
(y-(-4sqrt(2)-pi sqrt(2))/8)=(pi/(8+pi))(x-(-4sqrt(2)-pi sqrt(2))/8)