How do you find vertical, horizontal and oblique asymptotes for #[(e^-x)(x^5) + 2] /[ x^5 - x^4 -x +1]#?

1 Answer
Jun 3, 2017

Define

#g(x)=(x^5*e^-x+2)/(x^5-x^4-x+1)#

Bottom quintic should be factorised in order to find potential vertical asymptotes.

#f(x)=x^5-x^4-x+1#

Can be seen easily that 1 and -1 are factors. Then #(x-1)(x+1)#, #x^2-1# is a factor of #f(x)=0#. Then,

#f(x) = (x^2-1)*(Ax^3+Bx^2+Cx+D)#,
#f(x)=Ax^5 +Bx^4 + (C-A)x^3+(D-B)x^2-Cx-D#

Comparing coefficients gives,

#f(x)=(x^2-1)(x^3-x^2+x-1)#.

Another obvious factor of the cubic is -1. Applying the same method,

#f(x)=(x-1)^2(x+1)(x^2+1)#.

Then we see,

#g(x)=(x^5*e^-x+2)/((x-1)^2(x+1)(x^2+1))#.

From this, we can deduce there are horizontal asymptotes as the denominator goes to 0.

Vertical asymptotes at #x=-1# and #x=1#.

Oblique and horizontal asymptotes arise as #x# goes to #\pm\infty#.

Rewrite #g(x)# as,

#g(x) = (x^5)/((x-1)^2(x+1)(x^2+1))*e^-x+(2)/((x-1)^2(x+1)(x^2+1))#.

Because the numerator and denominator are 5th order polynomials,
#\lim_{x\to+\infty} ((x^5)/((x-1)^2(x+1)(x^2+1))) = 1#.

Due to the nature of exponentials,
#\lim_{x\to+\infty} e^-x = 0#.

Clearly,
#\lim_{x\to+\infty} ((2)/((x-1)^2(x+1)(x^2+1))) = 0#.

Then,
#lim_{x\to+\infty}g(x)=1*0+0#
#lim_{x\to+\infty}g(x)=0#

This gives us a horizontal asymptote #y=0#.

Using the same limits, #g(x) \rightarrow e^-x# as #x \rightarrow \infty#.

This gives us an oblique asymptote #y=e^-x#.