How do you factor #(3x^2+4x-15)/(2x^2+3x-9)#?
1 Answer
Jun 16, 2017
Explanation:
We can break the top polynomial like this:
#3x^2 + 4x - 15#
#3x^2 + 9x - 5x - 15#
And then we can simplify it like this:
#(3x^2 + 9x) - (5x+15)#
#3x(x+3) - 5(x+3)#
#= (3x-5)(x+3)#
We can also break the bottom polynomial similarly like this:
#2x^2 + 3x - 9#
#2x^2 + 6x - 3x - 9#
#(2x^2 + 6x) - (3x+9)#
#2x(x+3) - 3(x+3)#
#=(2x-3)(x+3)#
Therefore, our factored expression becomes:
#(3x^2 + 4x - 15)/(2x^2 + 3x - 9) = ((3x-5)(x+3))/((2x-3)(x+3)) = ((3x-5)cancel((x+3)))/((2x-3)cancel((x+3))#
After cancelling out the top and bottom of the expression, we get the result:
#(3x-5)/(2x-3)#
Final Answer