How do you divide #(-x^3-3x^2+7x+5)/(x-5) #?

1 Answer
Jul 13, 2017

see below

Explanation:

to divide #(−x^3−3x^2+7x+5)/(x−5)#, use long division

#(x−5)# l #(−x^3−3x^2+7x+5)# (l is supposed to be the long dividion symbol

#" "-1x^2 -8x -33 r-160/(x-5)#
#(x−5)# l #(−x^3−3x^2+7x+5)#
#" "-x^3+5x^2#
subtract
#" " -8x^2+7x+5#
#" "-8x^2+40x#
subtract
#" "-33x+5#
#" "-33x+165#
subtract
#" "-160#