Equation for finding distance between 22 coordinates == sqrt((x_2-x_1)^2+(y_2-y_1)^2)√(x2−x1)2+(y2−y1)2
Let,
(7,6)=(7,6)=point AA
(4,5)=(4,5)=point BB
(3,1)=(3,1)=point CC
Distance between ABAB
x_1=7,x_2=4,y_1=6,y_2=5x1=7,x2=4,y1=6,y2=5
AB=sqrt((4-7)^2+(5-6)^2)AB=√(4−7)2+(5−6)2
=>sqrt((-3)^2+(-1)^2⇒√(−3)2+(−1)2
=>sqrt(9+1)⇒√9+1
=>sqrt10⇒√10
AB=sqrt10AB=√10
Distance between BCBC
x_1=4,x_2=3,y_1=5,y_2=1x1=4,x2=3,y1=5,y2=1
BC=sqrt((3-4)^2+(1-5)^2)BC=√(3−4)2+(1−5)2
=>sqrt((-1)^2+(-4)^2⇒√(−1)2+(−4)2
=>sqrt(1+16)⇒√1+16
sqrt17√17
BC=sqrt17BC=√17
Distance between ACAC
x_1=7,x_2=3,y_1=6,y_2=1x1=7,x2=3,y1=6,y2=1
AC=sqrt((3-7)^2+(1-6)^2)AC=√(3−7)2+(1−6)2
=>sqrt((-4)^2+(-5)^2⇒√(−4)2+(−5)2
=>sqrt(16+25)⇒√16+25
=>sqrt41⇒√41
AC=sqrt41AC=√41
Perimeter of a triangle is the sum of its 33 sides, that AB+BC+AC.AB+BC+AC.
Perimeter=sqrt10+sqrt17+sqrt41Perimeter=√10+√17+√41