How do you differentiate g(x)=(1x3)xe2x using the product rule?

1 Answer
Aug 22, 2017

3x4xe2x+x312(xe2x)12(12e2x)

Explanation:

f(x)g(x)=ddxf(x)g(x)+f(x)ddxg(x)

So, we have (1x3)=x3

ddxx3=3x4using this rule nxn1

3x4xe2x+x3

then the derivative of xe2x=(xe2x)12

(xe2x)12 using chain rule enter image source here

(xe2x)12= 1/2(x-e^(2x))^(-1/2)(1-2e^(2x))#

So, it's equal to
3x4xe2x+x312(xe2x)12(12e2x)