How do you differentiate g(x) = (1/x^3)*sqrt(x-e^(2x)) using the product rule?

1 Answer
Aug 22, 2017

-3x^-4sqrt(x-e^(2x)) +x^-3 1/2(x-e^(2x))^(-1/2)(1-2e^(2x))

Explanation:

f(x)g(x)=d/dxf(x)g(x)+f(x)d/dxg(x)

So, we have (1/x^3)=x^-3

d/dx x^-3=-3x^-4using this rule nx^(n-1)

-3x^-4sqrt(x-e^(2x))+x^-3

then the derivative of sqrt(x-e^(2x)=(x-e^(2x))^(1/2)

(x-e^(2x))^(1/2) using chain rule enter image source here

(x-e^(2x))^(1/2)= 1/2(x-e^(2x))^(-1/2)(1-2e^(2x))#

So, it's equal to
-3x^-4sqrt(x-e^(2x)) +x^-3 1/2(x-e^(2x))^(-1/2)(1-2e^(2x))