How do you divide #(-2x^4+x^2+8x-7)/(5x-2)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer 1s2s2p Oct 11, 2017 #-(2x^3)/5-(4x^2)/25+(17x)/125+1034/625, r=-2307/625# Explanation: #" "-(2x^3)/5-(4x^2)/25+(17x)/125+1034/625, r=-2307/625# #5x-2|-2x^4+0x^3" "+x^2" "+8x-7# #" "- -2x^4+(4x^3)/5# #" "0-(4x^3)/5# #" "- -(4x^3)/5+(8x^2)/25# #" "0+(17x^2)/25# #" "-(17x^2)/25-(34x)/125# #" "0+(1034x)/125# #" "-(1034x)/125-2068/625# #" "0-2307/625# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1596 views around the world You can reuse this answer Creative Commons License